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Fig. 1: Overview of Stencil. Given a few (a) reference images, Stencil achieves (b) subject-driven generation and (c) subject
editing with high textual and subject fidelity in just 100 fine-tuning steps.

ABSTRACT

Recent text-to-image diffusion models can produce impres-
sive visuals from textual prompts, but they struggle to re-
produce the same subject consistently across multiple gen-
erations or contexts. Existing fine-tuning based methods for
subject-driven generation face a trade-off between quality and
efficiency. Fine-tuning larger models yield higher-quality
images but is computationally expensive, while fine-tuning
smaller models is more efficient but compromises image qual-
ity. To this end, we present Stencil. Stencil resolves this trade-
off by leveraging the superior contextual priors of large mod-
els and efficient fine-tuning of small models. Stencil uses a
small model for fine-tuning while a large pre-trained model
provides contextual guidance during inference, injecting rich

priors into the generation process with minimal overhead.
Stencil excels at generating high-fidelity, novel renditions of
the subject in less than a minute, delivering state-of-the-art
performance and setting a new benchmark in subject-driven
generation. Supplementary materials are available at IEEE
SigPort.

Index Terms— Computer Vision, Diffusion Models, Im-
age Editing, Subject-Driven Generation

1. INTRODUCTION

Text-to-image (T2I) diffusion models have demonstrated
remarkable success in producing high-quality, text-aligned
images. Recently, subject-driven generation has emerged as
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Fig. 2: Stencil Framework. (a) Lightweight Subject Fine-Tuning. We fine-tune a lightweight text-to-image diffusion model
on the reference image(s) of the subject. The Cross-Attention Guided Loss is applied so that gradients are computed only in
regions influenced by the subject token (e.g. “foy robot”). (b) Context Guidance. Given a user prompt, we draft an image with
a large frozen text-to-image model. The draft is inverted into the latent space of the lightweight fine-tuned model and refined
via null-text optimisation, producing the final image that preserves both the prompt context and the personalized subject.

a pivotal research area, enabling users to personalize subjects
by providing reference images as input to T2I models. How-
ever, subject-driven generation remains a difficult task, with
scalability being a primary challenge. Fine-tuning a small-
scale diffusion model is efficient, but often results in degraded
image quality. In contrast, fine-tuning a large-scale diffusion
model [2| 3]] yields results with superior image quality, but
is computationally expensive. This underscores the need for
methods that are both efficient and high-quality.

To this end, we propose Stencil. Stencil resolves this trade-
off by leveraging a novel technique called Context Guidance.
Stencil fine-tunes a lightweight model, while a large pre-
trained model injects its rich contextual priors at inference
to guide generation. This collaboration between two mod-
els enables efficient and high-fidelity subject-driven outputs
that neither model can achieve independently. Furthermore,
we introduce the Cross-Attention Guided Loss, which lever-
ages the cross-attention mechanism to focus fine-tuning on
subject-relevant regions of the reference images, excluding ir-
relevant details from the loss computation, reducing optimiza-
tion complexity and enabling faster convergence of the sub-
ject. Stencil achieves state-of-the-art (SOTA) results in gen-
eration while being the most cost-effective framework. Our
main contributions are as follows:

* We propose Context Guidance, a novel technique that
combines the efficiency of fine-tuning small diffusion mod-
els with the expressiveness of large ones.

* We propose the Cross-Attention Guided Loss function,
where we only optimize subject-relevant areas of the refer-

ence images to improve fine-tuning stability and efficiency.
* Our extensive experiments have validated the robustness
of our approach, achieving SOTA results.

2. RELATED WORKS

Recent methods for subject-driven generation can be divided
into two categories - those that fine-tune the diffusion model
on the reference images during test-time [4} 5,16, 7,18} 9]], and
those that train an additional structure to encode the reference
images [10, 11} 12} {13} 14} [15} [16]]. In this paper, we fo-
cus on the former. Textual Inversion [S] optimizes token em-
beddings within text prompts to capture subject representa-
tion. DreamBooth [4] fine-tunes the denoising U-Net to bind
the appearance of a subject with specific class tokens. Cus-
tom Diffusion [6] proposes to enhance efficiency by limiting
fine-tuning to the cross-attention layers of the U-Net. Em-
pirical results show that fine-tuning the U-Net typically yield
the best performance, yet the issue of efficiency is often over-
looked. Scaling to higher-quality outputs requires fine-tuning
larger diffusion models, making each iteration significantly
more computationally expensive. To bridge this gap, we pro-
pose Context Guidance. Moreover, existing fine-tuning ap-
proaches rely on the traditional Mean Squared Error (MSE)
for loss computation, which treats every pixel equally and
can lead to entanglement between the subject and the rest of
the reference image. Hence, to address this, we propose the
Cross-Attention Guided Loss, which prevents irrelevant de-
tails being baked into the learned subject’s representation.



3. METHOD

Fig. illustrates Stencil’s method framework, consisting
of an initial fine-tuning component with the Cross-Attention
Guided Loss (Sec. @]) followed by Context Guidance at in-
ference time (Sec. [3.3). Additional implementation details
are discussed in Supplementary Materials.

3.1. Preliminaries

Text-to-Image Latent Diffusion Models. Diffusion models
are a class of generative models that progressively transform
pure Gaussian noise xp into a target image xy through it-
erative denoising steps. Each model consists of a denoising
network fp(z4,t,1(P)), traditionally a U-Net, conditioned
on the text embedding ¢ (P), to predict the noise residual ¢,
of x; at time-step ¢, enabling the reconstruction of a slightly
de-noised sample z,_;. Latent diffusion models [17] reduce
compute complexity by applying the diffusion process on a
lower-dimensional latent space z;. The overall loss function
for training such a denoising network is computed as:
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Cross-Attention Mechanism. In cross-attention, the deep
spatial features ¢(z;) are linearly projected to a query () =
Lod(z), key K = Lgyp(P), and value V' = £y P) matrix
via learned projections {g, £k, /v, respectively. The attention
map is formulated as:

-
M = Softmax (Qj% ) 2)

where d is the latent projection dimension of the keys and
queries. The entry M;; defines the weight of the j-th token
on the pixel 7. Intuitively, cross-attention maps bind each
text token to specific regions of the image, which guides the
placement of textual elements in the generated image [18].
The attention output a(zf) = MV, updates ¢(z;) and is
propagated to the subsequent layers of the U-Net.

Inversion with Null-Text Optimization. Inversion is a core
technique allowing us to retrieve the noise vector correspond-
ing to a given image, such that the forward diffusion process
on the noise vector reproduces the given image. However, due
to the stochasticity of diffusion, the reconstructed image may
look different from the original image. Null-text optimiza-
tion [19] solves this problem by leveraging DDIM inversion
to establish a pivot trajectory. At each denoising time-step,
the unconditional embeddings (); are optimized to minimize
the deviations from the pivot trajectory, enabling perfect re-
constructions of the original image. The objective is:
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3.2. Cross-Attention Guided Loss Function

Fine-tuning with the traditional MSE loss fails to distinguish
between subject and background pixels in the reference im-
ages. This not only complicates optimization and slows con-
vergence but also risks embedding irrelevant background fea-
tures into the learned subject representation. The Cross-
Attention Guided Loss effectively addresses this problem by
regulating the learned subject token representation to concen-
trate on the subject-relevant pixels in the reference images.

Specifically, we use a vision-language model (VLM) to
generate a caption C' for each reference image and use the
cross-attention map of the subject token S in C to guide the
learning. We first add ¢ time-step noise to the reference im-
ages. We then perform a single forward pass of the noisy
latent, conditioned on C, through the frozen U-Net. During
this forward pass, we extract the cross-attention maps of S
from all heads and layers, up-sample them to match the la-
tent resolution, compute the mean and normalize the values
to obtain an average cross-attention map, M\g. The Cross-
Attention Guided Loss is defined as:

L= Beyerpi0) [Iizn, - (€= folz b (O3] @)

where 1 Ms>pr is a binary mask (with the same dimensions
as the latent image) indicating pixels where the subject to-
ken’s attention weight exceeds the threshold p;. A value of 1
marks subject-relevant pixels, while 0 indicates background.
We apply this mask element-wise to the loss, ensuring it is
computed only over subject regions. This guides the U-Net to

focus on learning the subject representation.

3.3. Context Guidance

At inference, we utilize a small fine-tuned T2I model f (Sec.
[3.2) for generation as well as a large pre-trained T2I model F
for Context Guidance. This allows us to generate images with
rich contextual priors injected from F', without the computa-
tional cost of fine-tuning on the same large-scale models that
are capable of producing them. We first draft a high-fidelity
image I using F' conditioned on the user’s target prompt Prp.
We then perform DDIM inversion with null-text optimization
of I using f to obtain the inverted latent X7 and the opti-
mized unconditional embeddings (); at each time-step t. We
then proceed to de-noise x with f . However, instead of in-
jecting (); at every time-step which would result in an almost
perfect reconstruction of I, we halt injections after the initial
denoising steps. We denote this operation as:

.\ {Jig(zt,t,ip(P),@t) ifr>T—t )

fo(ze, t,0(P)) otherwise

We show empirically in Fig. [3| that this operation allows the
subject appearance to drift away from I towards the learned
subject representation of f while maintaining the contextual
priors of .
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Fig. 3: Modifying 7. Decreasing 7 will shift the subject’s appearance towards the learned representation of the reference
subject while still preserving the contextual priors of the drafted image. This is enabled by the Cross-Attention Guided Loss,
which updates the subject token representation while minimizing the perturbation to the fine-tuned models remaining priors.
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Fig. 4: Qualitative Results. Our generated results feature subjects which closely resemble the true subjects (bottom right).

4. EXPERIMENTS

Experiment Setup. We use Stable Diffusion V1-5 [17] as
our base diffusion model. At inference, we use Stable Dif-
fusion 3 Medium to provide Context Guidance. We use
GPT-4o [20] to generate captions for each reference image.
Reference images are resized to 512x512 resolution, center-
cropped, and normalized. We set the threshold p; to 0.2 for
our Cross-Attention Guided Loss. Fine-tuning is then per-
formed in batches of 6 on a single A100 GPU for 100 itera-
tions at a learning rate of 2e-5. Inference was performed with
DDIM sampling [21]], with a step size of 50 and a guidance
scale set to 7.5. We set 7 = 60 for Context Guidance.

Evaluation Metrics. We evaluate Stencil on the Dream-
Bench dataset [4], consisting of 30 subjects each represented
by 4-7 reference images and tested across 25 prompts. We

assess the image quality along two key dimensions: subject
consistency, which measures how closely the generated sub-
ject resembles the true subject using DINO scores (computed
as the average pairwise cosine similarity between ViT-S/16
DINO embeddings of the generated and reference images),
and fext alignment, which evaluates how accurately the gen-
erated image reflects the user prompt using CLIP-T scores
(computed as the average cosine similarity between CLIP em-
beddings of the prompt and the generated image).

5. EXPERIMENT RESULTS

5.1. Quantitative Evaluation

Table [T] presents our quantitative evaluations. Stencil outper-
forms all previous methods in both text and subject fidelity.



Table 1: Quantitative comparison on DreamBench. Bold entries indicate the top-performing method for each evaluation
metric. Experimental results are referenced from the original papers as well as [13]].

Type ‘ Method Base Model | Subject Consistency (1) Text Alignment (1) ‘ GPU Hours (])
ELITE SDv1.4 0.621 0.293 336
BLIP-Diffusion SDvl.5 0.594 0.300 2304
IP-Adapter SDXL 0.613 0.292 672
Fine-tuning Free Kosmos-G SDvl1.5 0.618 0.250 12300
Emu2 SDXL 0.563 0.273 -
A-eclipse Kv2.2 0.613 0.307 74
SSR-Encoder SDvl.5 0.612 0.308 -
Textual Inversion SDv1.5 0.569 0.255 1
Fine-tuning DreamBooth SDv1.5 0.668 0.305 0.2
Custom Diffusion SDv1.5 0.643 0.305 0.2
Stencil (Ours) SDv1.5 0.671 0.328 0.1

Method ‘ Subject Consistency Text Alignment
Stencil (Ours) 0.782 0.764
DreamBooth 0.153 0.173
Undecided 0.064 0.062

Table 2: User Study. We compare Stencil to DreamBooth.
Values indicate user preferences in decimal values.

To our best knowledge, Stencil is the new SOTA among open-
source methods. Its Context Guidance mechanism enables
Stencil to noticeably outperform the others at producing se-
mantically accurate images. Stencil is also the most cost-
effective framework. Despite the added inference overhead
from Context Guidance, it achieves the lowest end-to-end
GPU time, thanks to the Cross-Attention Guided Loss which
enables much faster fine-tuning convergence.

5.2. Qualitative Evaluation

Fig. @] showcases images generated by Stencil. Compared
to other methods, Stencil excels at generating diverse layouts
while maintaining subject fidelity. We attribute this to Context
Guidance, which introduces unseen image structures into the
generation process. Table 2] presents results from our user
study consisting of 30 participants, where Stencil decisively
outperforms DreamBooth in both text alignment and subject
consistency.

5.3. Discussions and Limitations

A detailed discussion of Stencil’s applications and limita-
tions are provided in our Supplementary Materials. Sten-
cil supports a wide range of applications, including age
progression/regression, expression editing, accessorization,
perspective-conditioned generation, pose manipulation, and
style transfer.

Generated Images

Fig. 5: Failure Case. Stencil can sometimes inherit the limi-
tations of its base diffusion model.

As illustrated in Fig. 5] Stencil inherits certain limitations
from its underlying diffusion models, most notably the ten-
dency for local features to be applied globally. Additionally,
some subjects (e.g., animals) are easier to learn than others
(e.g., human faces), due to differences in training distribution.

6. CONCLUSION

In this paper, we introduced Stencil, an efficient fine-tuning
approach for subject-driven generation. Stencil incorporates
two key innovations: first, the Cross-Attention Guided Loss
function that directs the network’s learning towards subject
pixels, enabling faster and more stable convergence; and sec-
ond, Context Guidance, where we inject rich contextual priors
from a large pre-trained diffusion model into the generation
process. Experimental results further validate Stencil’s ro-
bustness and state-of-the-art performance. We hope our work
inspires future research in subject-driven generation.
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